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1. Goals for this Module

In this module, we will

1. Develop a general rule for computing probability , and a special case
rule applicable when elementary events are equally likely.

2. De�ne and discuss

(a) Joint Events

(b) Conditional Probability

(c) Independence

3. Derive the rule for computing the probability of a sequence, and a
special case rule applicable when events are independent.
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2. Computing Probability

2.1. The General Rule

For any event A in 
, A is the union of elementary events, which are non-
intersecting. Consequently, to compute the probability of A, simply sum
the probabilities of the elementary events in A.

Example 1 You have an unfair die, with probabilities as listed in the
following Table. Find the probability of the event E = f2; 4; 6g.

X Pr(X)
6 .3
5 .2
4 .1
3 .1
2 .2
1 .1

Solution. Simply add the probabilities of the events f2g, f4g, and
f6g together, obtaining .6 as the answer.

Example 2 Given the probabilities in the preceding Table, �nd the prob-
ability that the die will be even and greater than 3.
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Solution. This event is the set f4; 6g. Adding the probabilities for
f4g, and f6g, we obtain .4 as the answer.

2.2. Equally Likely Elementary Events

Since the probabilities of elementary events must sum to 1, when elemen-
tary events are equally likely each elementary event has probability 1=N
,
where N
 is the total number of elementary events in 
. Consequently,
any event A composed of NA elementary events must have probability
given by

Pr(A) =
NA
N


Example 3 Suppose a die is fair. Then each side is equally likely to come
up. There are 6 sides, and for their probabilities to add to 1, each side must
have a probability of 1=6. In this case N
 = 6. Suppose our event of
interest, call it A, is that the number is even and less than 6. To compute
the probability of a number being even and less than 6, we simply ask how
many elementary events are in A. Since A = f2; 4g, NA = 2; and

Pr(A) =
2

6
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3. Joint Events

So far, we have discussing probabilities when the events of interest involve
one process. In many cases, however, we are interested in the simultaneous
behavior of more than one process. In that case, we are interested in joint
events.

De�nition 4 (Joint Events) Joint events are the intersection of out-
comes on two di¤erent processes.

Example 5 You throw a fair coin and toss a fair die. The joint event is
the intersection of the outcome on the coin and the outcome on the die.
The following table, which is also a Venn diagram, shows the possibilities

Die
Coin 1 2 3 4 5 6
H H \ 1 H \ 2 H \ 3 H \ 4 H \ 5 H \ 6
T T \ 1 T \ 2 T \ 3 T \ 4 T \ 5 T \ 6

De�nition 6 (Marginal Events) The events on the margins of the above
table are called marginal events. They are the union of the events in
the respective row or column.

Example 7 One of the marginal events in the table is the event f3g. Note
that the only ways a 3 can occur is if you throw either a Head and a 3 or a
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Tail and a 3. So f3g = (H\3)[(T\3):Notice in passing that any marginal
event is partitioned by the events in its row or column. Consequently, by
the 3rd axiom of probability theory, the probabilities of the marginal events
in any row or column can be obtained by adding all the entries in the cells
of the respective row or column. We examine this notion further on the
next slide.

3.1. Probabilities in a Joint Probability Table

The table below shows probabilities for the joint events in the interior
of the table, and probabilities for the marginal events are listed on the
margins.

Die
1=6 1=6 1=6 1=6 1=6 1=6

Coin 1 2 3 4 5 6
1=2 H 1=6 0 1=6 0 1=6 0
1=2 T 0 1=6 0 1=6 0 1=6

How would you characterize in words the performance of the coin and
the die as depicted by the probabilities in the above table? Consider
their behavior both separately and together, i.e., their joint and marginal
behavior.
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4. Conditional Probability

De�nition 8 (Conditional Probability) The conditional probability of
A given B, denoted Pr(AjB), is the probability of A within the reduced
sample space de�ned by B:

By way of comment, let me continue by saying that to compute condi-
tional probabilities, you go into the reduced sample space of events where
B occurs, and compute the probability of obtaining A within that reduced
sample space.

Example 9 Consider again the table. Find the following

� Pr(1jH), the probability of a 1 given a head.

� Pr(Hj1); the probability of a head given a 1.

� Pr(EjT ), the probability of an even given a tail.

Die
1=6 1=6 1=6 1=6 1=6 1=6

Coin 1 2 3 4 5 6
1=2 H 1=6 0 1=6 0 1=6 0
1=2 T 0 1=6 0 1=6 0 1=6
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Notice that, to compute conditional probability, you went to a group
of cells characterized by a row or a column, and �restandardized�the joint
probabilities in that row or column so that they added up to 1. Perhaps
without realizing it, you performed this standardization by dividing each
entry in a row or column by the sum of the entries in that row or column.
For example, to compute Pr(1jH), you went into the row labeled �H�
and noted that in that reduced sample space, only 3 values ever occur for
the die, and they occur equally often. So the conditional probability of a
1 given a head must be 1=3. In other words, you divided Pr(1 \ H) by
Pr(H), obtaining (1=6)=(1=2) = 1=3. This type of operation leads to the
following formula for conditional probability.

De�nition 10 (Conditional Probability Formula)

Pr(AjB) = Pr(A \B)
Pr(B)
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5. Independence

Probabilistic independence is a key idea in probability theory. Notice that,
in the example of the preceding table, knowing the outcome on the coin
provides information about the outcome on the die, and vice versa, in the
sense that the conditional probabilities were di¤erent from the marginal
probabilities. For example, before knowing the outcome on the coin, the
probability of an odd numer on the die is 1=2. On the other hand, once
you know that the coin is a head, the probability of an odd becomes zero.
Two marginal events are independent if the status of one does not pro-
vide information about the other in the sense of changing the probability
distribution of the other.
This leads to the following de�nition

De�nition 11 (Probabilistic Independence) Two events are indepen-
dent if

Pr(AjB) = Pr(A)

or, alternatively, if
Pr(A \B) = Pr(A) Pr(B)
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6. Sequences

Many interesting problems in probability involve sequences of events. For
example, if you are playing 5 card stud poker, you might be interested in
the probability of the sequence A1A2, i.e., drawing an ace on the �rst card
and an ace on the second card. In general, sequences may be viewed as
intersections of events in time, so that the probability we are interested in
is actually Pr(A1\A2). If we look carefully at the de�nition of conditional
probability, we can see a general rule for the probability of a sequence. We
begin by deriving a general rule for the probability of the intersection of
two events.

Theorem 12 (Probability of an Intersection) The probability of the
intersection of two events A and B is given by

Pr(A \B) = Pr(A) Pr(BjA)

Proof. Consider the de�nition of conditional probability, but reverse the
roles of A and B. One obtains

Pr(BjA) = Pr(B \ A)
Pr(A)

=
Pr(A \B)
Pr(A)

and the result immediately follows.
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The preceding theorem leads immediately to a rule for calculating the
probability of a sequence.

Corollary 13 (Probability of a Sequence) The probability of the se-
quence of events A1A2A3 � � �AN is the product of the probabilities of events
at each point in the sequence conditional on everything that happened pre-
viously, i.e.,

Pr(A1A2A3 � � �AN) = Pr(A1) Pr(A2jA1)
�Pr(A3jA1A2)
�Pr(A4jA1A2A3)
� � � �Pr(AN jA1A2 � � �AN�1)

The result is simpler when the events are independent, because condi-
tionalizing has no e¤ect when events are independent.

Corollary 14 (Product Rule) Consider a sequence of independent events
A1A2A3 � � �AN . The probability of the sequence is given by

Pr(A1A2 � � �AN) = Pr(A1) Pr(A2) � � �Pr(AN)

Example 15 (Drawing Two Aces) We wish to compute the probability
of drawing two consecutive aces of the top of a perfectly shu ed deck in
stud poker. In poker there are 52 cards, and 4 of them are aces. Poker
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involves sampling without replacement, because what happens on one
draw a¤ects the probabilities for subsequent draws. Suppose cards are dealt
completely at random. What is the probability of drawing an ace on the
�rst card?

Solution 16 We need Pr(A1A2), which can be calculated as Pr(A1) Pr(A2jA1).
Since there are 52 cards in the sample space, and 4 of them are aces, and
elementary events are assumed to be equally likely, Pr(A1) is 4=52 = 1=13.
What is Pr(A2jA1)? Once the �rst card has been drawn, there are 51 cards
in the deck and 3 are aces. So Pr(A2jA1) = 3=51 = 1=17: Conseqently,
Pr(A1A2) = (1=13)(1=17) = 1=221.

Example 17 (Throwing Two Sixes) If you throw 2 independent fair
dice, what is the probability of throwing two sixes?

Solution 18 If we can assume the dice are fair, the probability of a six on
either die is 1=6. If we can assume independence, the product rule holds,
and the probability of two sixes is the product of the individual probabilities,
i.e, 1=36:
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